Pop-Jordanova Nada* and Pop-Jordanov Jordan
The main question in neuroscience is how the material tissue (brain) is producing the non-material phenomena (mind; thought, memory, emotions). Recent advancements in the brain sciences have enabled researchers to determine locations and patterns of neural activation associated with various psychological functions. Still, the mind-brain puzzle is complex and not yet elucidate. The fundamental relevance of EEG spectra for mental activation (both, general and focused) can be related to the interaction of electric field with neuronal quantum dipoles. The obtained analytical expressions and numerical values based on quantum transition probabilities correspond to classical empirical results for arousal and attention, including the characteristic frequency dependence and intervals. This paper proposes a theoretical approach to explain the characteristic empirical interdependence between the states of arousal (representing the level of consciousness) and EEG activity. Consequently, we introduced mathematical formula to calculate field-dipole interactions, which corresponds to clinical states and can be considered as an integral brain state attribute, correlated to its electric, mental and metabolic activity. The article is a compilation of some our related articles, published before. There is a substantial distinction between the coarsegrained arousal (as background state of consciousness) and the fine-grained content of consciousness, whereby attention appears to be a bridge. However, deeper understanding of substrates and emergence of arousal, attention and consciousness must take into account the subtle interplay of neurophysical, neurochemical and neurobiological correlates.